We present the UC$^3$RL algorithm for regret minimization in Stochastic Contextual MDPs (CMDPs). The algorithm operates under the minimal assumptions of realizable function class, and access to offline least squares and log loss regression oracles. Our algorithm is efficient (assuming efficient offline regression oracles) and enjoys an $\widetilde{O}(H^3 \sqrt{T |S| |A|(\log (|\mathcal{F}|/\delta) + \log (|\mathcal{P}|/ \delta) )})$ regret guarantee, with $T$ being the number of episodes, $S$ the state space, $A$ the action space, $H$ the horizon, and $\mathcal{P}$ and $\mathcal{F}$ are finite function classes, used to approximate the context-dependent dynamics and rewards, respectively. To the best of our knowledge, our algorithm is the first efficient and rate-optimal regret minimization algorithm for CMDPs, which operates under the general offline function approximation setting.
translated by 谷歌翻译
我们使用访问离线最小二乘回归甲骨文的访问权限,在最低可及性假设下为随机上下文MDP提供了遗憾的最小化算法。我们分析了三个不同的设置:在该动力学的位置,动力学是未知的,但独立于上下文和最具挑战性的设置,而动力学是未知和上下文依赖性的。对于后者,我们的算法获得$ \ tilde {o} \ left(\ max \ {h,{1}/{p_ {min}}} \} \} t \ log(\ max \ {| \ mathcal {f} |,| \ mathcal {p} | \}/\ delta)} \ right)$ hearse bunder bund bund bund bund bund bund bund bunging bund bunger,probinality $ 1- \ delta $,其中$ \ mathcal { P} $和$ \ Mathcal {f} $是用于分别近似动态和奖励的有限且可实现的函数类,$ p_ {min} $是最小可及性参数,$ s $是一组状态,$ a $ a $一组动作,$ h $ the Horizo​​n和$ t $情节数。据我们所知,我们的方法是使用一般函数近似的上下文MDP的第一种乐观方法(即,在没有其他有关功能类别的知识的情况下,例如线性等)。此外,我们还提供$ \ omega的下限即使在已知的动态情况下,也会产生预期的遗憾。
translated by 谷歌翻译
We study learning contextual MDPs using a function approximation for both the rewards and the dynamics. We consider both the case that the dynamics dependent or independent of the context. For both models we derive polynomial sample and time complexity (assuming an efficient ERM oracle). Our methodology gives a general reduction from learning contextual MDP to supervised learning.
translated by 谷歌翻译
Instruction tuning enables pretrained language models to perform new tasks from inference-time natural language descriptions. These approaches rely on vast amounts of human supervision in the form of crowdsourced datasets or user interactions. In this work, we introduce Unnatural Instructions: a large dataset of creative and diverse instructions, collected with virtually no human labor. We collect 64,000 examples by prompting a language model with three seed examples of instructions and eliciting a fourth. This set is then expanded by prompting the model to rephrase each instruction, creating a total of approximately 240,000 examples of instructions, inputs, and outputs. Experiments show that despite containing a fair amount of noise, training on Unnatural Instructions rivals the effectiveness of training on open-source manually-curated datasets, surpassing the performance of models such as T0++ and Tk-Instruct across various benchmarks. These results demonstrate the potential of model-generated data as a cost-effective alternative to crowdsourcing for dataset expansion and diversification.
translated by 谷歌翻译
Users' physical safety is an increasing concern as the market for intelligent systems continues to grow, where unconstrained systems may recommend users dangerous actions that can lead to serious injury. Covertly unsafe text, language that contains actionable physical harm, but requires further reasoning to identify such harm, is an area of particular interest, as such texts may arise from everyday scenarios and are challenging to detect as harmful. Qualifying the knowledge required to reason about the safety of various texts and providing human-interpretable rationales can shed light on the risk of systems to specific user groups, helping both stakeholders manage the risks of their systems and policymakers to provide concrete safeguards for consumer safety. We propose FARM, a novel framework that leverages external knowledge for trustworthy rationale generation in the context of safety. In particular, FARM foveates on missing knowledge in specific scenarios, retrieves this knowledge with attribution to trustworthy sources, and uses this to both classify the safety of the original text and generate human-interpretable rationales, combining critically important qualities for sensitive domains such as user safety. Furthermore, FARM obtains state-of-the-art results on the SafeText dataset, improving safety classification accuracy by 5.29 points.
translated by 谷歌翻译
We study grammar induction with mildly context-sensitive grammars for unsupervised discontinuous parsing. Using the probabilistic linear context-free rewriting system (LCFRS) formalism, our approach fixes the rule structure in advance and focuses on parameter learning with maximum likelihood. To reduce the computational complexity of both parsing and parameter estimation, we restrict the grammar formalism to LCFRS-2 (i.e., binary LCFRS with fan-out two) and further discard rules that require O(n^6) time to parse, reducing inference to O(n^5). We find that using a large number of nonterminals is beneficial and thus make use of tensor decomposition-based rank-space dynamic programming with an embedding-based parameterization of rule probabilities to scale up the number of nonterminals. Experiments on German and Dutch show that our approach is able to induce linguistically meaningful trees with continuous and discontinuous structures
translated by 谷歌翻译
Targeted syntactic evaluations of language models ask whether models show stable preferences for syntactically acceptable content over minimal-pair unacceptable inputs. Most targeted syntactic evaluation datasets ask models to make these judgements with just a single context-free sentence as input. This does not match language models' training regime, in which input sentences are always highly contextualized by the surrounding corpus. This mismatch raises an important question: how robust are models' syntactic judgements in different contexts? In this paper, we investigate the stability of language models' performance on targeted syntactic evaluations as we vary properties of the input context: the length of the context, the types of syntactic phenomena it contains, and whether or not there are violations of grammaticality. We find that model judgements are generally robust when placed in randomly sampled linguistic contexts. However, they are substantially unstable for contexts containing syntactic structures matching those in the critical test content. Among all tested models (GPT-2 and five variants of OPT), we significantly improve models' judgements by providing contexts with matching syntactic structures, and conversely significantly worsen them using unacceptable contexts with matching but violated syntactic structures. This effect is amplified by the length of the context, except for unrelated inputs. We show that these changes in model performance are not explainable by simple features matching the context and the test inputs, such as lexical overlap and dependency overlap. This sensitivity to highly specific syntactic features of the context can only be explained by the models' implicit in-context learning abilities.
translated by 谷歌翻译
Reranking methods in machine translation aim to close the gap between common evaluation metrics (e.g. BLEU) and maximum likelihood learning and decoding algorithms. Prior works address this challenge by training models to rerank beam search candidates according to their predicted BLEU scores, building upon large models pretrained on massive monolingual corpora -- a privilege that was never made available to the baseline translation model. In this work, we examine a simple approach for training rerankers to predict translation candidates' BLEU scores without introducing additional data or parameters. Our approach can be used as a clean baseline, decoupled from external factors, for future research in this area.
translated by 谷歌翻译
Multilingual machine translation models can benefit from synergy between different language pairs, but also suffer from interference. While there is a growing number of sophisticated methods that aim to eliminate interference, our understanding of interference as a phenomenon is still limited. This work identifies the main factors that contribute to interference in multilingual machine translation. Through systematic experimentation, we find that interference (or synergy) are primarily determined by model size, data size, and the proportion of each language pair within the total dataset. We observe that substantial interference occurs mainly when the model is very small with respect to the available training data, and that using standard transformer configurations with less than one billion parameters largely alleviates interference and promotes synergy. Moreover, we show that tuning the sampling temperature to control the proportion of each language pair in the data is key to balancing the amount of interference between low and high resource language pairs effectively, and can lead to superior performance overall.
translated by 谷歌翻译
In-context learning has shown great success in i.i.d semantic parsing splits, where the training and test sets are drawn from the same distribution. In this setup, models are typically prompted with demonstrations that are similar to the input question. However, in the setup of compositional generalization, where models are tested on outputs with structures that are absent from the training set, selecting similar demonstrations is insufficient, as often no example will be similar enough to the input. In this work, we propose a method to select diverse demonstrations that aims to collectively cover all of the structures required in the output program, in order to encourage the model to generalize to new structures from these demonstrations. We empirically show that combining diverse demonstrations with in-context learning substantially improves performance across three compositional generalization semantic parsing datasets in the pure in-context learning setup and when combined with finetuning.
translated by 谷歌翻译